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Preschool Children’s Mathematical Knowledge:
The Effect of Teacher “Math Talk”
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This study examined the relation between the amount of mathematical input in the speech of preschool
or day-care teachers and the growth of children’s conventional mathematical knowledge over the school
year. Three main findings emerged. First, there were marked individual differences in children’s
conventional mathematical knowledge by 4 years of age that were associated with socioeconomic status.
Second, there were dramatic differences in the amount of math-related talk teachers provided. Third, and
most important, the amount of teachers’ math-related talk was significantly related to the growth of
preschoolers’ conventional mathematical knowledge over the school year but was unrelated to their math

knowledge at the start of the school year.
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By the start of kindergarten, children demonstrate wide individ-
ual differences in their mathematical knowledge. Whereas some
children have an impressive array of mathematical skills—includ-
ing the ability to count the number of elements in small sets, to
match sets on the basis of their cardinality, to order sets in terms
of numerosity, and to carry out simple calculations— others evince
much less skill (e.g., Baroody, 1987; Brannon & Van de Walle,
2001; Bullock & Gelman, 1977; Clements, 2004; Gelman, 1972;
Huttenlocher, Jordan, & Levine, 1994; Levine, Jordan, & Hutten-
locher, 1992; Mix, Huttenlocher, & Levine, 2002; Wynn, 1990).
On average, young children from middle socioeconomic status
(SES) families have higher levels of mathematics achievement
than their lower SES peers (e.g., Jordan, Huttenlocher, & Levine,
1992; Saxe, Guberman, & Gearhart, 1987). Such early differences
have long-lasting implications for later school achievement, be-
coming more pronounced during elementary school (Case & Grif-
fin, 1990; Denton & West, 2002; Entwisle & Alexander, 1990;
Griffin, Case, & Siegler, 1994; Jordan et al., 1992) and continuing
on into middle school and high school (Braswell et al., 2001). It is
important to note that these early differences in mathematical
knowledge are associated with differences in the input children
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receive (e.g., Blevins-Knabe & Musun-Miller, 1996; Saxe et al.,
1987).

The early emergence of individual differences in mathematical
knowledge, coupled with the fact that about 70% of children in the
United States attend preschool or day care at 4 years of age (U.S.
Department of Education, National Center for Education Statistics,
2000), motivated our examination of whether the input variations
that occur in preschool and day-care settings contribute to chil-
dren’s early differences in mathematical knowledge. Although we
know that early environmental input is important to the develop-
ment of a wide range of cognitive skills (e.g., Campbell, Pungello,
Miller-Johnson, Buchinal, & Ramey, 2001; Huttenlocher, Vas-
ilyeva, Cymerman, & Levine, 2002; Reynolds & Temple, 1998),
and that day-care and preschool settings are potentially a signifi-
cant source of this input, very little is known about the nature and
frequency of mathematical input in preschool classrooms or about
the effects of such input variations on children’s mathematical
development.

Existing research on early mathematical input in preschool
classroom settings has mostly focused on the effectiveness of
enrichment or intervention programs. Not surprisingly, immedi-
ately following short-term programs targeting specific mathemat-
ics concepts, participating children show greater mastery of these
concepts than control children. More impressive is the finding that
these gains persist a year or more later (e.g., Arnold, Fisher,
Doctoroff, & Dobbs, 2002; Griffin & Case, 1996; Griffin et al.,
1994). Other studies have shown that comprehensive early inter-
vention programs have a positive impact on children’s math
achievement as well as other cognitive and social skills. For
example, children enrolled in full-time, high-quality educational
child care from infancy through 5 years of age had higher math
achievement as late as young adulthood than did control children
who did not experience the intervention but who received the same
nutritional supplements and social work services provided to the
intervention group (Campbell et al., 2001).



60 KLIBANOFF ET AL.

Although these studies demonstrate that young children’s math-
ematical knowledge is influenced by environmental input, they
leave several important questions unanswered. First, because most
intervention programs aim to increase general intellectual skills,
the specific kinds of input that affect young children’s mathemat-
ical skills remain unclear. Second, the positive effects of interven-
tion programs tell us little about whether naturally occurring
variations in the math input provided in preschool classrooms
affect children’s mathematical development.

The few existing studies investigating the effects of variations in
math input on children’s mathematical skills have focused on
parental input. Parental input has most commonly been assessed by
interviewing parents or by having them fill out checklists that
include a range of mathematically relevant activities. For example,
using a structured interview, Saxe et al. (1987) found that middle-
SES mothers engaged their children in more complex number
activities than low-SES mothers. Mirroring the differential input
provided, the middle-SES 4-year-olds performed better on rela-
tively complex numerical tasks than their low-SES peers. Simi-
larly, Blevins-Knabe and Musun-Miller (1996) asked parents to
estimate how often their kindergarten children had engaged in each
of more than 30 number-related activities during the previous
week. They found that the frequency of children’s number-related
activities at home was positively correlated with children’s numer-
ical knowledge as measured by the Test of Early Mathematics
Ability—Second Edition (TEMA-2; Ginsburg & Baroody, 1990).
Other studies have examined the interaction of parent—child dyads
engaged in prescribed counting and set-matching tasks, which
varied in complexity. In general, mothers gave more specific,
directed instruction to children at lower levels of competence, and
children generally were more successful as a result of this input
(e.g., Saxe et al., 1987). Unlike the present study, these studies
examined the relation of input to the child’s mathematical skill at
a particular time point rather than to the growth of children’s
mathematical skills.

In the present study, we investigated the effects of variations in
input from preschool or day-care teachers on the growth of chil-
dren’s mathematical skills. Focusing on teacher input rather than
parent input is an important step in helping to separate biological
from environmental effects on the growth of mathematical skills
because teachers, unlike parents, are not genetically related to
children. Nonetheless, it is possible that parents with higher levels
of math ability select preschools that provide more and better input
in this domain. Further, it is possible that children with higher
levels of math knowledge elicit more math input from their teach-
ers. A pattern of results showing that the amount of teacher math
input is not related to children’s mathematical knowledge at the
start of the school year but is related to the growth of their math
skills over the school year would challenge those explanations and
would lend support to the proposal that teachers’ math input
propels the growth of children’s mathematical knowledge. Such
findings would go beyond earlier studies that correlated parental
math input and children’s mathematical knowledge, studies in
which the direction of influence was less clear. Of course, defin-
itive evidence that teacher input is causally related to the growth of
children’s mathematical knowledge would require an experimental
study that randomly assigned children to conditions with different
levels of input.

Our primary question was whether the total amount of mathe-
matically relevant input preschool teachers provide in their speech

is related to the growth of children’s mathematical knowledge over
the 4-year-old nursery school year. Although we were interested in
the relation of particular types of input to the growth of particular
types of mathematical knowledge, our ability to address this ques-
tion was constrained by the size of the speech samples obtained
from teachers and by the type of assessment we gave the children.
We do report the relative frequencies of different kinds of input
teachers provided, and these data show that certain kinds of math
input are much more frequently provided in teacher language than
are other kinds.

A number of studies have shown that the overall amount of
language input children receive is related to their general vocab-
ulary growth (e.g., Hart & Risley, 1992; Huttenlocher, Haight,
Bryk, Seltzer, & Lyons, 1991). Moreover, the specific lexical
items acquired appear to be sensitive to variations in amount of
input. For example, Hoff and Naigles (1998) reported that the
earliest verbs children acquire tend to be those that are most
frequent in the input. Such findings led us to hypothesize that the
amount of “math talk” children hear will impact their acquisition
of mathematically relevant language.

Developmental studies indicate that early quantitative represen-
tations are linked to quantitative language, notably, to knowledge
of the count words. In particular, children’s ability to represent
exact number is related to the acquisition of counting skills,
especially when sets contain more than a few items or when sets
being compared contain dissimilar items (Huttenlocher et al.,
1994; Jeong & Levine, 2005; Mix, 1999; Mix, Huttenlocher, &
Levine, 1996). Number words might serve to call attention to the
fact that sets labeled with the same number word are numerically
equivalent (Mix et al., 2002). Wynn (1990) proposed that counting
begins as a meaningless game, almost like reciting nursery rhymes,
but that children come to abstract important mathematical proper-
ties from these experiences with the count words. She reported that
children learn the meanings of one, two, and three individually, in
ascending sequence, and that only after acquiring these words do
they then learn the cardinal word principle and the meanings of all
the number words in their counting range. Consistent with these
developmental studies are reports from cross-cultural studies that
speakers of languages that lack an elaborated counting system
have limited ability to represent number exactly (Gordon, 2004;
Pica, Lemer, Izard, & Dehaene, 2004). These cross-cultural find-
ings, together with the developmental findings, led us to predict an
association between the early mathematical development of young
children and the amount of their exposure to mathematically
relevant language.

Our initial examination of transcripts of teacher speech revealed
that quantitative input seemed to occur in several different contexts
that had the potential to promote children’s mathematical knowl-
edge. These contexts ranged from planned mathematical instruc-
tion (e.g., children were asked to count sets of objects, to compare
the numerosity of two sets, or to carry out calculations such as “If
we have twenty-one children in class and one person is missing,
how many people do you think there are at our rug now?”) to input
that occurred in the context of another activity (e.g., children
engaged in an art project that involved constructing a book were
asked to put numbered pages in order), to incidental comments
about quantity (e.g., “Can you tell me what is different about those
two beads?” and “What do we do when we have more than one
friend who wants to play with something?”’). Although some types
of input may be more instructive than others, all of these types of
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input have the potential to promote the acquisition of mathematical
language and concepts. Moreover, it was not always easy to
determine whether the quantitative inputs in teacher speech were
planned or were more incidental. Thus, we made the decision to
include them all in our assessment of the amount of mathematical
input a teacher provides through speech.

To our knowledge, the present study is the first to investigate
math input by examining transcripts of speech to children, a
method that enabled us to capture incidental mathematically rele-
vant input as well as planned instruction and to obtain accurate
information about the frequency and nature of such input. Unlike
relying on questionnaires or checklists to assess input, this ap-
proach allowed us to assess mathematical input as it occurred
online rather than relying on adults’ memory of what inputs
occurred. This may be particularly important for the more inci-
dental instances of mathematical language, both because teachers
may not consider these instances as math input and because they
may have difficulty remembering such instances. Thus, an added
benefit of transcribing and coding teacher speech was that it
enabled us to capture all of the teachers’ mathematical language.
Further, unlike methods in laboratory studies in which child—adult
dyads were observed interacting over a prescribed numerical ac-
tivity, this method allowed us to examine the input that occurred in
a more naturalistic manner and thus to gain better information
about the amount and nature of mathematically relevant language
preschool children hear at school.

We also examined whether any relation between amount of
math input and children’s math growth over the school year was
specifically tied to teachers’ “math talk” by including more general
aspects of input in our analyses of factors related to children’s
math growth. These other input measures were general quality of
the classroom, as indexed by a measure based on the National
Association for the Education of Young Children’s (NAEYC)
preschool checklist (Hyson, Hirsch-Pasek, & Rescorla, 1990), and
syntactic complexity of teachers’ speech, a measure that we pre-
viously found to be related to children’s syntactic development
(Huttenlocher et al., 2002). We used hierarchical linear modeling,
a form of mixed-model regression analysis, to examine the relation
among growth in students’ mathematical knowledge and math
input, classroom quality, and syntactic complexity of teachers’
speech. This analytical technique permitted us to treat classrooms
and schools as nested random effects, appropriately recognizing
their contributions to the variance of the structure.

Method

Participants

Our sample included children from 26 classrooms drawn from 13
preschools and day-care centers in the Chicago area.' As is true nationally,
the schedules for preschools and day-care centers are quite variable in the
Chicago area; about half of our schools were half-day programs, and the
other half were full-day programs. This study was part of a larger project
examining the effects of teacher language, and teachers were told that we
would audiotape their speech during a typical school day in the middle of
the school year and that we would administer a cognitive assessment
battery to children in their classes at the beginning and end of the school
year. The assessment battery included vocabulary and syntax comprehen-
sion tests as well as our math assessment. Teachers did not know that we
were particularly interested in the relation of math input to the growth of
children’s mathematical knowledge.

To recruit classrooms for our study, we sent letters to 20 public and
private preschools in Chicago and the surrounding suburbs. School direc-
tors were then contacted by phone, and those who expressed interest in
participating in the study were included. The participating schools repre-
sented a wide range of socioeconomic and ethnic groups. Although we
tried to contact a range of schools that were representative of the demo-
graphics of the greater Chicago area, because this was not a probability
sample, we cannot be certain that our results will generalize.

All classrooms within participating schools that served children in the
targeted age range were included provided that at least 3 children in the
classroom participated in our study at both assessment time points. All
children in these classrooms whose parents returned signed permission
forms were included, with one exception: Non-native English speakers
were not included in our analyses. Class sizes ranged from 14 to 25
children, but not all children returned permission slips; hence, the number
of participating children in each class ranged from 3 to 15, with a median
number of 6.

Participating schools were categorized into one of three SES groups:
low, middle, or high. The directors of all schools, including the Head Start
schools, were called to obtain information about the income and education
levels of the families they served, because this procedure was thought to
provide more accurate information about SES at the school level than
would census tract data. We started by providing directors with median
income and education information reported for their areas in the 2000
United States Census tract data. Directors were asked to tell us whether this
information was correct for the families their school served, and if it was
not, to correct it. The four schools (containing four of our classrooms) in
the low-SES groups served families with estimated incomes below
$25,000, and less than 25% of the parents had attained a BA or higher
degree. The three schools (containing eight of our classrooms) in the
middle-SES group served families with estimated incomes of $25,000 to
$75,000, and between 25% and 50% of parents had attained a BA or higher
degree. Finally, the six schools (containing 14 of our classrooms) in our
high-SES group served families with estimated incomes above $75,000,
and more than 70% of these parents had attained a BA or higher degree.
Reflecting the demographics of the Chicago area, some of the schools
served primarily Caucasian children, some served primarily African Amer-
ican children, and some served children from a variety of ethnic/racial
groups.

We assessed the math skills of a total of 198 children across the 26
classrooms in the study. Most children were tested twice, once at the
beginning and once at the end of the school year (i.e., October and April).
However, 52 children were absent when one of the assessments was carried
out or had moved or changed programs by the end of the school year. When
these children were eliminated, 146 of the 198 children remained in the
sample. Of these, 6 scored at the ceiling level at the first testing time point,
and because these children could not show growth of mathematical knowl-
edge, they were excluded from our analyses, which left 140 children. On
average, the children were 4 years 8 months old (SD = 4.5 months) at the
first testing point and 5 years 2 months old (SD = 4.5 months) at the
second testing point. Boys and girls were roughly evenly represented in the
sample. We also audiotaped the speech of the 26 head teachers for later
transcription and coding of math input.

! The classrooms in the present study were drawn from the same schools
as those included in a study of the relation of complexity of teachers’
syntax to children’s syntactic comprehension (Huttenlocher et al., 2002).
However, the data for this study were collected during the 4-year-old
preschool year, whereas the data for Huttenlocher et al.’s study were
collected during the 3-year-old preschool year. The same sample of teacher
speech was used to code both math input and syntactic complexity of
speech.
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Procedure

Assessment of children’s mathematical knowledge. Children’s math
knowledge was evaluated at the beginning (October) and end (April) of the
school year using an assessment consisting of 15 questions preceded by
two sample questions. Children were assessed individually in a quiet place
in their preschools during a normal school day. Each testing session lasted
approximately 10 min. Alternative forms of the assessment were used in
the fall and the spring in order to minimize practice effects, with the order
of forms counterbalanced across children. Pilot testing showed that the
alternative forms were equivalent in difficulty, and our reassessment of this
equivalence after the fall testing concurred with this pilot testing.

Each question on the 15-item assessment was presented in a multiple-
choice format. The following kinds of knowledge were assessed: ordinal-
ity, cardinality, calculation, shape names, understanding “half,” and rec-
ognizing conventional number symbols. For ordinality and cardinality, sets
of different numerosity were used in order to vary difficulty (see Table 1
for more detail on items). Success on these questions depended on the
child’s knowledge of mathematical concepts and the corresponding lan-
guage of mathematics, for example, the concept of ordinality as well as the
number words and quantitative terms that express this concept. Our earlier
work showed that middle-income children outperformed low-income chil-
dren on verbally presented arithmetic calculations (both word problems
and number fact problems) but that these groups did not differ on parallel
problems presented in a nonverbal format (Jordan et al., 1992; Jordan,
Levine, & Huttenlocher, 1994). This finding is consistent with Ginsburg
and Russell’s (1981) claim that certain mathematical skills (such as those
tested in the nonverbal calculation task) develop in a “robust fashion” not
dependent on SES-related environmental influences. Such findings suggest
that conventional mathematical knowledge may be more sensitive to input
variations than nonverbal mathematical knowledge.

We used our 15-item math assessment rather than a standardized test
such as the TEMA-2 (Ginsburg & Baroody, 1990) for two reasons. First,
our time with each child was limited by the fact that children were also
given vocabulary and syntax comprehension tests. Second, the questions
on our math assessment were all multiple choice in format, as were the
items on the syntax task. We expected that this consistency in item format
would make the tasks easier and quicker to administer and that they would
yield more reliable data. Split-half reliability of our math assessment
(based on a comparison of scores on odd and even items) was significant
at both time points (Time Point 1: r = .493, p < .01; Time Point 2: r =
439, p < .01). It should be noted that the items on our brief math
assessment had a high degree of overlap with those on the TEMA-2. In
particular, 13 of 15 items on our assessment tap knowledge of math
concepts that are also assessed on the TEMA-2. Thus, we have reason to
believe that our short math assessment is both reliable and valid.

Assessment of teacher input. 'To obtain a measure of teachers’ input to
children, an observer visited each participating classroom for 2.5 to 3
hours, in January or February of the school year. The head teacher wore a
lapel microphone so that his or her speech could be audiotaped. One hour
of the tape was later transcribed and coded for mathematically relevant
input. In an attempt to gather input from comparable situations across the
different classrooms, the hour selected for transcription included “circle
time” and the time immediately following circle time. Circle time is a time
in which the entire class gathers to participate in discussions, to receive
instruction, to sing, and so forth; most preschool and day-care programs
include some version of circle time in their daily schedule. By using circle
time to assess math input in all classrooms, we eliminated random variation
in input that occurs around different contexts. We also succeeded in using
a time during which teachers have the potential to engage in math talk and
during which all children in the class have access to this talk. Although
observing teacher talk on only one occasion leads to measurement error,
our observations suggested that activities during this time were routinized
and familiar to children. Transcriptions included only the teachers’ speech
and occasional notes explaining the context. Our method of coding teach-
ers’ speech for mathematically relevant input is described in detail below.

In addition to audiotaping teacher speech, the observer filled out a
questionnaire based on the NAEYC checklist for preschools (Hyson et al.,
1990). We included 10 questions that assess the general quality of teaching,
for example, the extent to which teachers attempt to involve children in
activities by stimulating their curiosity and interest, the extent to which
teachers use redirection or positive reinforcement as discipline techniques,
and so forth. For each question, the observer assigned a score that varied
from 1 (not at all like this classroom) to 5 (very much like this classroom).
The average score was calculated over the 10 questions and used as our
measure of general classroom quality.

Analysis of transcripts. Within 24 hours of a classroom observation,
the observer who visited the classroom transcribed the audiotape and
provided context notes to assist coders in interpreting the input. Coders
identified instances of math input from transcriptions of the audiotapes.
The following nine types of input were coded as instances of mathemati-
cally relevant input (see Table 2 for examples of each input type):

1. Counting encompassed both reciting counting words and count-
ing objects in sets because it was not possible to differentiate
these input types on the basis of audiotapes.

2. Cardinality involved stating (or asking for) the number of things
in a set without counting them. If cardinality was used to rein-
force counting, it was coded as a separate instance, for example,

Instruction

Choices

Written symbol: Child was shown card with the number “2” on it

7 dots, 5 dots

1, 2, 3, 4 dots

and was asked, “Which one of these goes with this one?”

Table 1
Assessment Items
Item type
Ordinality “Point to the one that has more.”
Cardinality
Oral number: “Point to four.”
Calculation

“Johnny has one apple and his mommy gives him one more.

2, 3, 4, 5 objects

1, 2, 3, 4 apples

Point to how many apples Johnny has now.”

Shape names “Point to the triangle.”
Understanding “half”

Recognizing conventional number symbols “Point to the number.”

“Point to the one that shows half.”

Triangle, square, circle, rectangle
1/2, 1/4, 1/3, 2/3 of shaded circle

B,e 2, %
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Table 2
Examples of Types of Math Input Provided by Teachers

Type of input Examples

Counting “I shouldn’t hear any tap ‘til he says one, two, three.”
“Now we counted out 1, 2, 3, 4,5, 6,7, 8,9, 10 teeth to go in the top of your
mouth.”
“Alright Dana, help us count: 1, 2, 3, 4,5, 6, ... 21, 22 Tommy 23.”
[counting days on the calendar]
Cardinality “Sure, all three of you can help me.”
“But how many crocodiles did he have?”
“Can you tell me what’s different about those two beads?”
Equivalence “We share by dividing equally.”
“Let’s see Chris, we had two groups of ten here but it looks like. . ..”
“Okay this and this is the same amount of money. They are the same.”
Nonequivalence “Oh no, you have more than twelve teeth.”

“What do we do when we have more than one friend that wants to play with
something?”

“Seven people said yes, ten people said no. Which one was more people?”

“OK, right up here at the top, what number do I have?”

“OK Jacqueline, can you get the blue nine?”

“Good, OK, if you have a seven put a dinosaur on it.” [Dinosaur Bingo game]

“We’ll read part two about Israel about what the children are wearing.”

“Not February the sixth, today is not February sixth.”

“Remember a little while ago when we did the play The Three Little Pigs?”

“Very good, yesterday was seventy-four and today is number seventy-five.”

“Nine, what comes after nine?”

“Tuesday was twenty-two. Alex what do you think Wednesday is?”

“We’re going to count out ten beans for your top teeth and ten beans for your
bottom teeth, which makes twenty.”

“And if you take three away from six how many will you have?”

“If we have twenty-one children in our class and one person is missing, how
many people do you think there are at our rug now?”

“How are we going to count to seventy-five, John? ... Are we going to use
ones or tens and ones?”

“How many times are we going to count by ten? Seven times, how many

Number symbols

Conventional nominative

Ordering

Calculation

Placeholding

ones? Five.”

“One, two, three. There are three books.” would be coded as two
instances, one of counting and one of cardinality.

Equivalence encompassed statements describing a quantitative
match, either of number or of amount, between two or more
entities. These included (a) one-to-one mapping (e.g., each child
gets one cracker), (b) one-to-many mapping (e.g., each group has
four children), and (c) stating that two amounts or sets are the
same.

Nonequivalence encompassed statements of two or more entities
being unequal, whether referring to (a) unspecified amounts
(e.g., “Who has the most?”), (b) one amount specified and the
other(s) unspecified (e.g., “Oh no, you have more than 12 teeth”),
or (c) all relevant amounts specified (e.g., “Seven people said
yes, 10 people said no. Which one was more people?”).

Number symbols were coded if utterances included instances in
which a teacher labeled a written number symbol or asked a child
to identify, write, or find a number symbol (e.g., “3” in a stack
of cards with printed numbers).

Conventional nominatives used numbers as labels for things or dates.
Ordering instances referred to a sequence and made explicit
reference to more than one entity or set. Note that reciting a list
of number words in order would not be coded as ordering but

rather as counting.

Calculation instances included cases in which a teacher per-

formed a calculation or asked a child to solve a calculation
problem.

9. Placeholding encompassed any input that referred to place value:
ones, tens, hundreds, and so forth and included, but was not
limited to, the decomposition of (at least) two-digit numbers.

Reliability was established on 35% (9/26) of the transcripts. The reli-
ability for the total amount of teacher input and for each of the categories
of input was high (total amount of input: r = .99; range for each input
category: r = .81-.99). It was not possible to establish reliability for
calculation or placeholding, as these input types were rare and did not
occur in the nine transcripts used for reliability coding.

In order to address our main question of whether the overall amount of
math input provided by teachers is related to the growth of children’s math
skills, we computed the total number of instances that occurred for each
teacher across the nine types of input coded. As described above, a single
utterance often contained more than one instance of math input. For
example, a teacher might say, “I see three trucks in the block area and four
trucks in the kitchen area, so how many trucks are there altogether?”
According to our coding system, this statement would contain three in-
stances of math input: two instances of cardinality (“three trucks” and “four
trucks”) and one instance of calculation (“how many trucks are there
altogether?”’). Most utterances that contained instances of equivalence,
nonequivalence, ordering, calculation, or placeholding also contained in-
stances of cardinality.

Analysis.  Our design involved a sample of students nested within
classrooms which, in turn, were nested within schools. Both classrooms
and schools were taken to be random effects because the specific class-
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rooms and schools in our sample were not of particular interest in and of
themselves but were of interest only because they represented samples
from populations of classrooms and schools. In our examination of SES
effects on math input, our only independent variable was categorical, so we
used a nested analysis of variance (ANOVA) model to analyze these data.
However, we were also interested in the relation of quantitative indepen-
dent variables (math input, syntax input, and classroom quality) and math
knowledge gains in the context of this nested design. Given the structure of
the design, ANOVA was not appropriate because the independent variables
were not categorical. Conventional multiple regression analysis was like-
wise not appropriate because it assumes that the design is a simple random
sample (without nesting). Application of multiple regression methods in
cases of nested designs violates assumptions of the statistical methods and
leads to significance tests that are inaccurate (see Raudenbush & Bryk,
2002). An alternative analytic strategy that is appropriate for nested designs
is based on hierarchical linear models (HLM; see Raudenbush & Bryk,
2002). Analyses using HLM provide accurate significance tests for asso-
ciation as well as estimates of the variance components for the random
effects associated with the design.

In the design of this study, students were nested within classrooms,
which were nested within schools, where both classrooms and schools were
random effects. The effects of math input, teacher syntax, and classroom
quality occurred at the level of the classroom, but the effect of school SES
occurred at the school level. To analyze data with two nested random
effects, we used a three-level hierarchical linear model (Raudenbush &
Bryk, 2002). The analytic model can most easily be described in terms of
the statistical model at each of the three levels of the analysis. At the first
level (students within classrooms), the model for the gain in mathematics
knowledge for the kth student in the jth classroom in the ith school
(denoted Y;;) is

Yip = oy + €4

where m,; is the average gain in mathematics knowledge in the jth
classroom in the ith school and & is a student-specific residual.

We were interested in understanding the relation among characteristics
of math input, teacher syntax, and classroom quality, all of which occur at
the level of the classroom. Thus we used Level 2 (classroom-level) models
that included these input characteristics. We actually fit two slightly
different kinds of Level 2 models. One of them included the three char-
acteristics one at a time. The other included these characteristics simulta-
neously. Specifically, the Level 2 model including all three characteristics
simultaneously is

Mo = Booi T BoMATHINPUT;; + B, SYNTAX; +
BosCLASSQUALITY,, + £,

where B, is a school-specific intercept, 3y, is the relation between math
input and class mean mathematics knowledge gain in school i, 3., is the
relation between syntax input and class mean mathematics knowledge gain
in school i, Bys; is the relation between classroom quality and class mean
mathematics knowledge gain in school i, MATHINPUT;; is the math input
score of classroom j in school i, SYNTAX;; is the syntax input score of
classroom j in school i, CLASSQUALITY ; is the classroom quality score
of classroom j in school 7, and &, is a classroom-specific residual (random
effect). The models that included the characteristics individually were
similar except that they each had only one of the three predictors at Level 2.
We also expected that achievement gains would vary across schools
(which are random effects). The sample size was not large enough to
simultaneously estimate the variance of all of the possible input effects
across schools (although exploratory analyses suggested that these varia-
tions were not large). Consequently, the Level 3 (school-level) model is

Booi = Yooo T Yo SES; + mgo;

Boii = Yoio

Bozi = Yoo

Bosi = Yosos

where 1y, is the average intercept across schools, vy, is the association
of average school SES on school average gains in math knowledge, vy, is
the average relation between math input and class mean mathematics
knowledge gain across schools, 7, is the average relation between syntax
input and class mean mathematics knowledge gain across schools, Yysq is
the average relation between classroom quality and class mean mathemat-
ics knowledge gain across schools, and 74, is a school-specific random
effect.

Thus the object of the statistical analysis was to estimate the five fixed
effects (Yooo. Yoo1» Yoror Yozo. and Yo3o) and the three variance compo-
nents—one at each level of the design (the person-specific variance of g,
the classroom-specific variance of &, and the school-specific variance of
Tood)-

We also examined the three input characteristics (math input, syntax
input, and classroom quality) separately. In these analyses, the Level 2
model differed in that it included only one of the inputs, but the Level 1 and
Level 3 models were identical to those given above.

Results
Children’s Math Scores

We first examined individual children’s math scores at the
beginning and end of the school year. Proportion correct responses
on the math assessment were calculated at each time point for
those children present at both the fall and spring assessments who
were not at ceiling at the fall test point (140 of the total 198). These
scores were then arcsine transformed for statistical analyses, as is
standard when data are reported as percentages.

An analysis of variance with SES of the school’s population
(low, middle, high) as a between-subjects variable and assessment
time (fall, spring) as a within-subject variable revealed main ef-
fects of assessment time, F(1, 137) = 33.255, p < .01, and SES,
F(2, 137) = 28.906, p < .01, and no interaction, F(2, 137) =
1.139, p = .323 (see Figure 1). The main effect of assessment time
reflected better performance in the spring (M = .82, SD = .14)
than in the fall (M = .71, SD = .17), Cohen’s d = .88. Tukey’s
honestly significant difference (HSD) tests revealed that the aver-
age score of children at schools serving low-SES families (M =
.55, SD = .15) significantly differed from the average scores of
both those at schools serving high-SES families (M = .80, SD =
.15), p < .01, Cohen’s d = 1.41, and those at schools serving
middle-SES families (M = .79, SD = .13), p < .01, Cohen’s d =
1.27. Children at high- and middle-SES schools did not differ
significantly from each other (p > .60). Although the absence of
a significant School SES X Assessment Time interaction might be
interpreted as showing comparable growth of math knowledge in
the three SES groups, the amount of growth shown by children in
the higher SES groups might have been constrained by ceiling
effects at the second assessment time point; of the 16 children who
were at ceiling at the posttest, 14 attended schools serving high-
SES families and 2 attended schools serving middle-SES families.

Teacher Input Measures

Teacher math input in the 26 classrooms varied widely, both in
terms of the amount of input and the diversity of input types
provided. The amount of math input teachers provided ranged
from 1 to 104 instances during the hour of input we coded; the
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Proportion correct on math assessment for the three socioeconomic status (SES) groups (high,

middle, and low) in the fall and the spring of the 4-year-old preschool year.

average number of instances was 28.3 (SD = 24.2). The diversity
of types of math input also varied widely, with teachers providing
between 1 and 9 different types of input (out of a possible 9 coded
types). The average number of math input types provided was 3.9
(8D = 1.8). Not surprisingly, amount and diversity of math input
were significantly correlated (r = .70, p < .01), indicating that
teachers who provided a larger amount of math input also tended
to provide a greater diversity of types of math input.

Table 3 summarizes the relative frequencies of the different
kinds of math inputs in teacher speech. By far the most common
type was cardinality—Ilabeling the numerosity of a set (48%). This
was followed by labeling written number symbols (17%), counting
(13%), and conventional nominatives (9%). The four most fre-
quent categories combined accounted for 87% of all inputs. The
other five input types (calculation, ordering, nonequivalence,
equivalence, and placeholding) each accounted for 5% or less of
the total inputs and occurred in less than half of all the classrooms
in our sample.

An analysis of variance examined whether the amount of math
input provided in teacher speech differed significantly across
classrooms serving different SES groups. The effect of SES was

Table 3
Frequency of Math Input Types: Total Across Classrooms
Number of
Raw number classrooms
across Proportion of using this input
Input type classrooms total inputs type
Cardinality 356 A48 26
Number symbols 123 17 13
Counting 95 13 18
Conventional
nominatives 67 .09 17
Calculation 36 .05 4
Ordering 29 .04 8
Nonequivalence 15 .02 9
Equivalence 12 .02 7
Placeholding 4 .01 1

not significant (F = 1.23, p = .312, ns). Of note, amount of
teacher math input was not correlated with mean classroom math
scores at the fall testing time point (r = .001, p = .996, ns). Thus,
it does not appear to be the case that teachers provided different
amounts of math input in response to children’s initial level of
mathematical knowledge or as a function of their SES. The same
pattern of results was found for diversity of kinds of input. Because
parallel results were obtained on amount of input and diversity of
input in all our analyses, in subsequent analyses we report only
results for amount of input.

General classroom quality was assessed using a measure based
on the NAEYC checklist (maximum average score across ques-
tions was 5). An analysis of variance revealed a main effect of
SES, F(2, 23) = 7.84, p < .01. Post hoc Tukey’s HSD tests
showed that classrooms serving children from high-SES families
had higher scores (M = 4.6, SD = 0.46) than both classrooms
serving children from middle-SES families (M = 3.8, SD = 0.83),
p < .05, Cohen’s d = 1.97, and classrooms serving children from
low-SES families (M = 3.4, SD = 0.29), p < .01, Cohen’s d =
1.24. The average scores of the classrooms serving middle- and
low-income families did not differ significantly from each other
(p = .47). General classroom atmosphere scores were positively,
but not significantly, correlated with math input scores (r = .25,
p > .20). Similarly, the amount of math input teachers provided
was positively, but not significantly, correlated with the syntactic
complexity of teachers’ speech (r = .18, p > .30; see Huttenlocher
et al., 2002, for a description of how syntactic complexity was
computed). These findings suggest that the amount of math input
teachers provide is somewhat independent of other positive aspects
of teacher input.

Relation of Teachers’ Input and Children’s Math Growth

The results of the HLM analyses examining the individual
effects of each of the three input variables on math knowledge
gains are reported in Table 4. In all of our HLM analyses, we
multiplied the number of math inputs teachers provided by 20,
which corresponds to an estimate of the number of mentions that
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Table 4

Results of the Hierarchical Linear Model Analysis Using Predictors Individually

95% confidence

interval
Final estimation of
fixed effects Coefficient SE t df P Lower Upper
Intercept, Ygo0 .097 018 5.437 12.000 .000 .058 136
Math input, ¥y, .031 .010 3.299 11.000 .008 .008 .054
Syntax input, Yy —.084 231 —0.362 11.000 724 —.592 425
Classroom quality, o3 .046 .023 2.010 11.000 .069 —.004 .096
Socioeconomic status, Yoo 012 .022 0.531 11.000 .606 —.036 .059

would occur in a month if the rate of input observed represents a
consistent estimate of input over time. It is important to know that
this scale factor has no effect on the significance of our results but
makes the numerical results easier to interpret. This table shows
that there is a statistically significant association of math input
with gains in math knowledge but no statistically significant effect
of SES when math input is controlled. The table also shows that
there is no statistically significant association between syntax
input, classroom quality, or school SES on math knowledge gains.
In these analyses, neither the Level 2 (classroom-level) nor Level
3 (school-level) variance components were statistically significant
(p > .50). We report effect sizes in the form of coefficients of the
HLM analysis and their 95% confidence intervals.

The results of the HLM analyses examining all three input
variables together are given in Table 5, which shows that there is
a statistically significant association of math input with gains in
mathematics knowledge but no association of syntax input, class-
room quality, or SES with gains in mathematics knowledge when
math input is controlled. In this analysis, as in the previous
analyses, neither the Level 2 (classroom-level) nor Level 3
(school-level) variance components were statistically significant
(p > .50). Again, we report effect sizes in the form of coefficients
of the HLM analysis and their 95% confidence intervals. The
effect size of teacher math input can be evaluated as follows: As
previously mentioned, the range of teacher input at a single ob-
servation was about 100 (1-104). An increase of 25 mentions per
observation period (about a quarter of the range) would be asso-
ciated with a change in achievement gain of 25 X 0.00844 = 0.21
standard deviations of achievement gain, which is in the range of
what Cohen (1977) called a small effect; an increase of 50 men-
tions per observation period (about half the range) would be
associated with a change in achievement gain of 50 X 0.00844 =
0.42 standard deviations of achievement gain, close to what Cohen
(1977) called a medium effect.”

Several of the children in our study obtained perfect scores
(scored at ceiling) on the measure of math knowledge either at the
pretest, the posttest, or both. The scores of children who scored at
the ceiling at the pretest could logically only stay the same or
decrease on the posttest, and therefore no meaningful measure of
growth is possible for them. Consequently, we excluded the 6
children who scored at the ceiling at the pretest from all of our
analyses. In contrast, children who were not at the ceiling at the
pretest could logically exhibit either growth or decline. Children
who were not at the ceiling at pretest but reached the ceiling at the
posttest exhibited growth, but their growth was probably underes-
timated. Because some measure (albeit a probable underestimate)

of growth was possible for them, we chose to include in our
analyses the 16 children who were not at the ceiling at pretest but
reached the ceiling at the posttest. In order to determine whether
the choice to include children who scored at the ceiling at posttest
might have influenced our results, we repeated all of our analyses
with these children excluded (e.g., including only children who did
not score at the ceiling on either the pretest or the posttest). The
results of those analyses were qualitatively equivalent to those
presented here. That is, the results of all of the significance tests
were the same with and without children who scored at the ceiling
on the posttest included in the sample.

Discussion

Three main findings emerged from the present study. First,
consistent with previous studies, there were marked individual
differences in children’s conventional mathematical knowledge by
4 years of age. On average, according to our assessment, level of
mathematical knowledge was higher for children from high- and
middle-SES backgrounds than for children from low-SES back-
grounds. Second, preschool teachers varied dramatically in the
amount of math talk they provided. Third, and most important, our
results indicate that the amount of preschool teachers’ math talk
was significantly related to the growth of young children’s con-
ventional math knowledge over the course of the school year.
Below we discuss each of these findings in turn.

Consistent with previous findings (e.g., Jordan et al., 1994; Saxe
et al., 1987), we found differences in math scores among children
from different SES groups. These differences remained constant
across the school year, as the growth of children’s scores did not
differ by SES group. This may have been the case because in our
sample of schools, there was not a significant difference in the
amount of mathematically relevant input provided in classrooms
serving children from varying SES backgrounds. The equivalence
in math growth in the three SES groups in the face of comparable
amounts of mathematically relevant input is consistent with the
finding that amount of teacher input was significantly correlated
with the average level of math growth in classrooms. However, as
mentioned previously, it is possible that ceiling effects on the math
assessment used masked an SES effect, which would reflect
greater growth in the higher SES groups.

2 The effect sizes were calculated by dividing the math input coefficient
from Table 5 by 20 to obtain the coefficient for a single day (.026/20 =
.0013). This was then divided by the residual SD of the math gain, s =
0.154, to get B/s = .0084416.
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Table 5

Results of the Hierarchical Linear Model Analysis Using All Predictors Simultaneously

95% confidence

interval
Final estimation of

fixed effects Coefficient SE t df P Lower Upper
Intercept, Ygo0 .094 .016 5.923 11.000 .000 .059 128
Math input, ¥y, .026 .010 2.508 9.000 .033 .004 .049
Syntax input, Yo —.040 212 —0.188 9.000 .855 —.519 439
Classroom quality, Y30 .059 .034 1.714 9.000 120 —.019 137
Socioeconomic status, Yoo —.040 .033 —1.238 11.000 242 —.112 .031

Our second main result was the finding of marked variation in
the amount of mathematically relevant input provided by different
preschool teachers. During the 1 hour of teacher speech that was
coded for each classroom, the number of mathematically relevant
instances ranged from 1 to 104. It is interesting that the amount of
input provided did not significantly differ across classrooms serv-
ing children from different SES groups. If we are correct in
thinking that these math input differences are consistent over time,
the variations found among the teachers in our sample would be
likely to result in large differences in amount of input over the
course of the school year. Such consistent differences would be
likely to result in differences in the growth of math knowledge
among children in different classrooms. Alternatively, if the math
input differences found reflect random fluctuations among the
teachers sampled, no such relationship between input and class-
room math growth would be expected.

This brings us to our third and most important finding, that of a
significant relation between the amount of math input in teacher
speech and the growth of children’s math skills over the school
year. The finding of an association between amount of talk about
math and the growth of children’s conventional math knowledge is
likely to be a part of the more general relationship between
vocabulary growth and amount of language input (Hart & Risley,
1992; Huttenlocher et al., 1991; Weizman & Snow, 2001). It is
reasonable that acquiring the vocabulary of mathematics (e.g.,
mapping number words to set sizes), like vocabulary acquisition
more broadly, is related to amount of input. Although acquiring the
language of conventional mathematics is only a part of developing
math skills, it is an important tool for fostering mathematical
thinking. For example, in tasks such as counting sets of objects
accurately, recognizing which of two spoken numbers is greater, or
calculating the answer to an addition or subtraction problem,
knowledge of the conventional order of a string of number words
is necessary, although obviously not sufficient, to succeed. In
addition, knowledge of the cardinal meaning of the number words
is associated with the ability to represent the exact numerosity of
sets and to calculate exact answers to calculation problems, par-
ticularly when set sizes exceed a few items. Thus, input that helps
children learn the language of mathematics also affects their math-
ematical skills.

Our HLM analyses suggest that the relation between teacher
input and children’s math growth is specifically related to teach-
ers’ math input. Although we found a significant relation between
growth of children’s conventional mathematical knowledge and
the amount of math talk provided by the teacher, we did not find
a relation between math growth and our other teacher and class-

room measures. In particular, math growth was not related to
general classroom atmosphere or to syntactically complex utter-
ances in teachers’ speech, a nonmath aspect of teacher input.
Although measurement error may have masked the relation of
these other variables and math growth, we did find a relation
between teachers’ syntactic complexity and the growth of chil-
dren’s syntax skills in a related study (Huttenlocher et al., 2002).
Thus, it is not the case that measurement error precludes the
finding of any relationship between these variables and the growth
of children’s skills. Further, teachers’ math input, teachers’ syn-
tactic complexity, and general classroom atmosphere were not
significantly correlated, suggesting that the amount of math input
teachers provide is somewhat independent of other positive aspects
of teacher input. Thus, it appears that the relation between teach-
ers’ math talk and the growth of children’s math skills does not
simply reflect a general input effect.

Finally, we were able to rule out a number of alternative
explanations for the relation between math input and math growth.
Notably, it did not appear to be the case that higher SES families
chose preschools on the basis of the math input provided, because
amount of math input did not significantly differ for schools
serving children from different SES backgrounds. Further, al-
though children who had more math knowledge at the start of the
school year might have elicited more math input from their teach-
ers, this did not appear to be the case because the amount of math
input provided by teachers was not correlated with children’s math
scores at the start of the school year.

This study is a first indication that coding of teacher language
provides a potentially useful way of measuring mathematical input
in preschool classrooms. In future work, we plan to gather larger
samples of speech from each teacher participating and to admin-
ister children a standardized math assessment that would provide a
more comprehensive view of their math knowledge. This would
allow us to take the important next step of examining whether
particular types of math input more strongly predict the growth of
specific types of math skills or overall growth of children’s math
knowledge. This work would provide more specific information to
preschool teachers about how to foster the mathematical knowl-
edge of young children. An additional important step will be to
carry out experimental studies in which preschool children are
randomly assigned to treatment groups to determine whether there
is a causal relation between amount of teacher math talk and the
growth of children’s math knowledge.

In the meantime, the results of the current study have important
theoretical and practical implications. Theoretically, they indicate
that amount of teacher math talk is related to children’s mathe-
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matical skills. We argue that acquiring the language of mathemat-
ics is important to the acquisition of mathematical concepts and to
the application of these concepts in problem solving. Practically,
our findings suggest that preschool teachers may be able to foster
the mathematical knowledge of young children by increasing their
“math talk.” Although this idea is conveyed in the Standards for
Grades Pre-K-2 of the National Council of Teachers of Mathe-
matics (2000), to our knowledge, this is the first study to demon-
strate an association between amount of math talk and children’s
math growth. There are many opportunities in preschool class-
rooms to engage children in conversations that include rich quan-
titative information. The examples in our transcripts indicate that
many preschool teachers naturally incorporate math talk into their
daily routines. The message that more talk about math may have
the potential to increase children’s math skills is a simple one but
one that holds promise for increasing the preparedness of large
numbers of young children for the challenges they will face in
elementary school and beyond.
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